Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Small ; : e2312153, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441386

RESUMEN

Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38456346

RESUMEN

CRISPR/Cas systems stand out because of simplicity, efficiency, and other superiorities, thus becoming attractive and brilliant gene-editing tools in biomedical field including cancer therapy. CRISPR/Cas systems bring promises for cancer therapy through manipulating and engineering on tumor cells or immune cells. However, there have been concerns about how to overcome the numerous physiological barriers and deliver CRISPR components to target cells efficiently and accurately. In this review, we introduced the mechanisms of CRISPR/Cas systems, summarized the current delivery strategies of CRISPR/Cas systems by physical methods, viral vectors, and nonviral vectors, and presented the current application of CRISPR/Cas systems in cancer clinical treatment. Furthermore, we discussed prospects related to delivery approaches of CRISPR/Cas systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Sistemas CRISPR-Cas , Técnicas de Transferencia de Gen , Vectores Genéticos , Neoplasias/genética , Neoplasias/terapia
3.
Acta Pharm Sin B ; 14(2): 821-835, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322329

RESUMEN

Radiotherapy (RT) can potentially induce systemic immune responses by initiating immunogenic cell death (ICD) of tumor cells. However, RT-induced antitumor immunologic responses are sporadic and insufficient against cancer metastases. Herein, we construct multifunctional self-sufficient nanoparticles (MARS) with dual-enzyme activity (GOx and peroxidase-like) to trigger radical storms and activate the cascade-amplified systemic immune responses to suppress both local tumors and metastatic relapse. In addition to limiting the Warburg effect to actualize starvation therapy, MARS catalyzes glucose to produce hydrogen peroxide (H2O2), which is then used in the Cu+-mediated Fenton-like reaction and RT sensitization. RT and chemodynamic therapy produce reactive oxygen species in the form of radical storms, which have a robust ICD impact on mobilizing the immune system. Thus, when MARS is combined with RT, potent systemic antitumor immunity can be generated by activating antigen-presenting cells, promoting dendritic cells maturation, increasing the infiltration of cytotoxic T lymphocytes, and reprogramming the immunosuppressive tumor microenvironment. Furthermore, the synergistic therapy of RT and MARS effectively suppresses local tumor growth, increases mouse longevity, and results in a 90% reduction in lung metastasis and postoperative recurrence. Overall, we provide a viable approach to treating cancer by inducing radical storms and activating cascade-amplified systemic immunity.

4.
Bioact Mater ; 35: 228-241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38333614

RESUMEN

In situ vaccine (ISV) is a promising immunotherapeutic tactic due to its complete tumoral antigenic repertoire. However, its efficiency is limited by extrinsic inevitable immunosuppression and intrinsic immunogenicity scarcity. To break this plight, a tumor-activated and optically reinforced immunoscaffold (TURN) is exploited to trigger cancer immunoediting phases regression, thus levering potent systemic antitumor immune responses. Upon response to tumoral reactive oxygen species, TURN will first release RGX-104 to attenuate excessive immunosuppressive cells and cytokines, and thus immunosuppression falls and immunogenicity rises. Subsequently, intermittent laser irradiation-activated photothermal agents (PL) trigger abundant tumor antigens exposure, which causes immunogenicity springs and preliminary infiltration of T cells. Finally, CD137 agonists from TURN further promotes the proliferation, function, and survival of T cells for durable antitumor effects. Therefore, cancer immunoediting phases reverse and systemic antitumor immune responses occur. TURN achieves over 90 % tumor growth inhibition in both primary and secondary tumor lesions, induces potent systemic immune responses, and triggers superior long-term immune memory in vivo. Taken together, TURN provides a prospective sight for ISV from the perspective of immunoediting phases.

5.
J Control Release ; 366: 505-518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184233

RESUMEN

Vascular endothelial growth factor (VEGF) not only serves as an autocrine survival factor for tumor cells themselves, but also stimulates angiogenesis by paracrine pathway. Strategies targeting VEGF holds tremendous potential for tumor therapy, however, agents targeting VEGF are limited by intolerable side effects, together with incomplete and temporary blocking of VEGF, resulting in unsatisfactory and unsustained therapeutic outcomes. Herein, hierarchical-unlocking virus-esque NanoCRISPR (HUNGER) is constructed for complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF, thereby eliciting notable tumor inhibition and antiangiogenesis. After intravenous administration, HUNGER exhibits prolonged blood circulation and hyaluronic acid-CD44 mediated tumor-targeting capability. Subsequently, when matrix metalloproteinase-2 is overexpressed in the tumor microenvironment, the PEG layer will be removed. The cell-penetrating peptide R8 endows HUNGER deep tumor penetration and specific cellular uptake. Upon cellular internalization, HUNGER undergoes hyaluronidase-triggered deshielding in lysosome, lysosomal escape is realized swiftly, and then the loaded CRISPR/Cas9 plasmid (>8 kb) is transported to nucleus efficiently. Consequentially, complete, permanent and efficient intracellular disruption of autocrine and paracrine pathway of VEGF ensures inhibition of angiogenesis and tumor growth with inappreciable toxicity. Overall, this work opens a brand-new avenue for anti-VEGF therapy and presents a feasible strategy for in vivo delivery of CRISPR/Cas9 system.


Asunto(s)
Neoplasias , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular , Humanos , Transporte Biológico , Inmunoterapia , Metaloproteinasa 2 de la Matriz , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico
7.
Biomaterials ; 305: 122444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142471

RESUMEN

Immunogenicity improvement is a valuable strategy for tumor immunotherapy. However, immunosuppressive factors bestow tolerogenic phenotype on tumor-infiltrating DCs, which exhibit weak antigen presentation and strong anti-inflammatory cytokines secretion abilities, limiting the effectiveness of tumor immunotherapy even if the tumor has adequate immunogenicity. Herein, we designed a programmable releasing versatile hydrogel platform (PIVOT) to sculpt tumor immunogenicity, increase intratumoral DCs and cDC1s abundance, and reverse the tolerogenic phenotype of DCs, thus promoting their maturation for boosting innate and adaptive immune responses. Responsive to tumoral reactive oxygen species (ROS), the hydrogel splits and promotes the activation of DCs and macrophages. Then, oxaliplatin is first released from PIVOT to sculpt tumor immunogenicity by inducing immunogenic cell death (ICD) and causing tumoral DNA fragments exposure simultaneously. Subsequently, the impaired DNA fragments bind to high mobility group protein 1 (HMGB1) forming the DNA-HMGB1 complex. Moreover, exogenous FMS-like tyrosine kinase 3 ligand (Flt-3L) recruits masses of DCs, especially cDC1s, which will endocytose the complex benefiting from TIM-3 blockade (αTIM3) that can reverse tolerogenic DCs. Finally, the endocytosis activates the cGAS-STING pathway of cDC1s, which promotes the secretion of type I IFN that triggers innate immune responses, and CXCL9 which recruits CD8+ effector T cells to initiate the following adaptive immune response against tumor progress. PIVOT achieves nearly 90 % tumor growth inhibition and induces systemic antitumor immune responses. In conclusion, this study focuses on ICD-mediated tumor immunogenicity sculpture and nucleic acid endocytosis-involved tolerogenic DCs reversal, providing a novel paradigm for enhancing DCs-based antitumor immune responses.


Asunto(s)
Proteína HMGB1 , Neoplasias , Humanos , Proteína HMGB1/metabolismo , Células Dendríticas , Hidrogeles/metabolismo , Antígenos de Neoplasias , Neoplasias/patología , Presentación de Antígeno , ADN/metabolismo
8.
Adv Sci (Weinh) ; 10(35): e2303715, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875395

RESUMEN

Coevolution of tumor cells and surrounding stroma results in protective protumoral environment, in which abundant vessel, stiff structure and immunosuppression promote each other, cooperatively incurring deterioration and treatment compromise. Reversing suchenvironment may transform tumors from treatment-resistant to treatment-vulnerable. However, effective reversion requires synergistic comprehensive regression of such environment under precise control. Here, the first attempt to collaboratively retrograde coevolutionary tumor environment to pre-oncogenesis status, defined as tumor environment regression therapy, is made for vigorous immune response eruption by a switchable prune-to-essence nanoplatform (Pres) with simplified composition and fabrication process. Through magnetic targeting and multimodal imaging of Pres, tumor environment regression therapy is guided, optimized and accomplished in a trinity way: Antiangiogenesis is executed to rarefy vessels to impede tumor progression. By seizing the time, cancer associated fibroblasts are eliminated to diminish collagen and loosen the stiff structure for deep penetration of Pres, which alternately functioned in deeper tumors, forming a positive feedback loop. Through this loop, immune cell infiltration, immunosuppression mitigation and immunogenic cells death induction are all fulfilled and further escalated in the regressed environment. These transformations consequently unleashed systemic immune responses and generated immune memory against carcinoma. This study provides new insights intotreatment of solid tumors.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Inmunoterapia/métodos , Muerte Celular , Inmunidad
9.
Biomaterials ; 301: 122218, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37393695

RESUMEN

Cancer vaccine-based postsurgical immunotherapy is emerging as a promising approach in patients following surgical resection for inhibition of tumor recurrence. However, low immunogenicity and insufficient cancer antigens limit the widespread application of postoperative cancer vaccines. Here, we propose a "trash to treasure" cancer vaccine strategy to enhance postsurgical personalized immunotherapy, in which antigenicity and adjuvanticity of purified surgically exfoliated autologous tumors (with whole antigen repertoire) were co-reinforced. In the antigenicity and adjuvanticity co-reinforced personalized vaccine (Angel-Vax), polyriboinosinic: polyribocytidylic acid (pIC) and tumor cells that have undergone immunogenic death are encapsulated in a self-adjuvanted hydrogel formed by cross-linking of mannan and polyethyleneimine. Angel-Vax exhibits an enhanced capacity on antigen-presenting cells stimulation and maturation compared to its individual components in vitro. Immunization with Angel-Vax provokes an efficient systemic cytotoxic T-cell immune response, contributing to the satisfied prophylactic and therapeutic efficacy in mice. Furthermore, when combined with immune checkpoint inhibitors (ICI), Angel-Vax effectively prevented postsurgical tumor recurrence, as evidenced by an increase in median survival of approximately 35% compared with ICI alone. Unlike the cumbersome preparation process of postoperative cancer vaccines, the simple and feasible approach herein may represent a general strategy for various kinds of tumor cell-based antigens in the inhibition of postsurgical tumor relapse by reinforced immunogenicity.


Asunto(s)
Vacunas contra el Cáncer , Animales , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Hidrogeles , Linfocitos T Citotóxicos , Adyuvantes Inmunológicos/farmacología , Antígenos de Neoplasias , Inmunoterapia , Vacunación
10.
J Nanobiotechnology ; 21(1): 228, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461088

RESUMEN

BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional "Golden Cicada" nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS: Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS: In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Hipertermia Inducida/métodos , Verde de Indocianina/farmacología , Neoplasias/tratamiento farmacológico , Terapia Genética , Línea Celular Tumoral
11.
Theranostics ; 13(9): 2774-2786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284454

RESUMEN

Rationale: CRISPR-Cas13a is an efficient tool for robust RNA knockdown with lower off-target effect, which may be a potentially powerful and safe tool for cancer gene therapy. However, therapeutic effect of current cancer gene therapy that targeting monogene was compromised by the multi-mutational signal pathway alterations of tumorigenesis. Methods: Here, hierarchically tumor-activated nanoCRISPR-Cas13a (CHAIN) is fabricated for multi-pathway-mediated tumor suppression by efficient microRNA disruption in vivo. A fluorinated polyetherimide (PEI; Mw=1.8KD) with graft rate of 33% (PF33) was utilized to compact the CRISPR-Cas13a megaplasmid targeting microRNA-21 (miR-21) (pCas13a-crRNA) via self-assemble to constitute a nanoscale 'core' (PF33/pCas13a-crRNA), which was further wrapped by modified hyaluronan (HA) derivatives (galactopyranoside-PEG2000-HA, GPH) to form CHAIN. Results: The dual-tumor-targeting and tumor-activated CHAIN not only manifested long-term circulation, but augmented tumor cellular uptake and endo/lysosomal escape, thus achieving efficient transfection of CRISPR-Cas13a megaplasmid (~ 13 kb) in tumor cells with minimal toxity. Efficient knockdown of miR-21 by CHAIN restored programmed cell death protein 4 (PDCD4) and reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) and further crippled downstream matrix metalloproteinases-2 (MMP-2), which undermined cancer proliferation, migration and invasion. Meanwhile, the miR-21-PDCD4-AP-1 positive feedback loop further functioned as an enhanced force for anti-tumor activity. Conclusion: Treatment with CHAIN in hepatocellular carcinoma mouse model achieved significant inhibition of miR-21 expression and rescued multi-pathway, which triggered substantial tumor growth suppression. By efficient CRISPR-Cas13a induced interference of one oncogenic microRNA, the CHAIN platform exerted promising capabilities in cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Mutación , Proteínas Reguladoras de la Apoptosis/genética
12.
ACS Nano ; 17(12): 11414-11426, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310989

RESUMEN

Redox heterogeneity of tumor cells has become one of the key factors leading to the failure of conventional photodynamic therapy (PDT). Exploration of a distinctive therapeutic strategy addressing heterogeneous predicaments is an appealing yet highly challenging task. Herein, a multiple stimuli-responsive nanoCRISPR (Must-nano) with spatial arrangement peculiarities in nanostructure and intracellular delivery is fabricated to overcome redox heterogeneity at both genetic and phenotypic levels for tumor-specific activatable PDT. Must-nano consists of a redox-sensitive core loading CRISPR/Cas9 targeting hypoxia-inducible factors-1α (HIF-1α) and a rationally designed multiple-responsive shell anchored by chlorin e6 (Ce6). Benefiting from the perfect coordination of structure and function, Must-nano avoids enzyme/photodegradation of the CRISPR/Cas9 system and exerts prolonged circulation, precise tumor recognition, and cascade-responsive performances to surmount tumor extra/intracellular barriers. After internalization into tumor cells, Must-nano could undergo hyaluronidase-triggered self-disassembly with charge reversal and rapid endosomal escape, followed by site-specific release and spatially asynchronous delivery of Ce6 and CRISPR/Cas9 under stimulations of redox signals, which not only improves tumor vulnerability to oxidative stress by complete HIF-1α disruption but also destroys the intrinsic antioxidant mechanism through glutathione depletion, thereby homogenizing redox-heterogeneous cells into oxidative stress-sensitive cell subsets. Under laser irradiation, Must-nano eventually exhibits optimal potency to amplify oxidative damage, effectively inhibiting the growth and hypoxia survival of redox-heterogeneous tumor in vitro and in vivo. Overall, our redox homogenization tactic significantly maximizes PDT efficacy and offers a promising strategy to overcome tumor redox heterogeneity in the development of antitumor therapies.


Asunto(s)
Nanopartículas , Nanoestructuras , Fotoquimioterapia , Porfirinas , Humanos , Línea Celular Tumoral , Porfirinas/farmacología , Porfirinas/química , Hipoxia/tratamiento farmacológico , Oxidación-Reducción , Fármacos Fotosensibilizantes/química , Nanopartículas/química
13.
Small Methods ; 7(10): e2300019, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37386794

RESUMEN

Personalized vaccines capable of circumventing tumor heterogeneity have exhibited compelling prospects. However, their therapeutic benefit is greatly hindered by the limited antigen repertoire and poor response of CD8+ T-cell immunity. Here, a double-signal coregulated cross-linking hydrogel-based vaccine (Bridge-Vax) is engineered to rebuild the bridge between innate and adaptive immunity for activating CD8+ T-cells against full repertoire of tumor antigens. Mechanistically, unlike prominent CD4+ T-cell responses in most cases, administration of Bridge-Vax encapsulated with granulocyte-macrophage colony-stimulating factor concentrates a wave of dendritic cells (DCs), which further promotes DCs activation with costimulatory signal by the self-adjuvanted nature of polysaccharide hydrogel. Simultaneously, synergy with the increased MHC-I epitopes by codelivered simvastatin for cross-presentation enhancement, Bridge-Vax endows DCs with necessary two signals for orchestrating CD8+ T-cell activation. Bridge-Vax elicits potent antigen-specific CD8+ T-cell responses in vivo, which not only shows efficacy in B16-OVA model but confers specific immunological memory to protect against tumor rechallenge. Moreover, personalized multivalent Bridge-Vax tailored by leveraging autologous tumor cell membranes as antigens inhibits postsurgical B16F10 tumor recurrence. Hence, this work provides a facile strategy to rebuild the bridge between innate and adaptive immunity for inducing potent CD8+ T-cell immunity and would be a powerful tool for personalized cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Vacunas Combinadas , Inmunidad Adaptativa , Memoria Inmunológica , Neoplasias/terapia , Hidrogeles
14.
Acta Pharm Sin B ; 13(2): 804-818, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873172

RESUMEN

Neoadjuvant chemotherapy has become an indispensable weapon against high-risk resectable cancers, which benefits from tumor downstaging. However, the utility of chemotherapeutics alone as a neoadjuvant agent is incapable of generating durable therapeutic benefits to prevent postsurgical tumor metastasis and recurrence. Herein, a tactical nanomissile (TALE), equipped with a guidance system (PD-L1 monoclonal antibody), ammunition (mitoxantrone, Mit), and projectile bodies (tertiary amines modified azobenzene derivatives), is designed as a neoadjuvant chemo-immunotherapy setting, which aims at targeting tumor cells, and fast-releasing Mit owing to the intracellular azoreductase, thereby inducing immunogenic tumor cells death, and forming an in situ tumor vaccine containing damage-associated molecular patterns and multiple tumor antigen epitopes to mobilize the immune system. The formed in situ tumor vaccine can recruit and activate antigen-presenting cells, and ultimately increase the infiltration of CD8+ T cells while reversing the immunosuppression microenvironment. Moreover, this approach provokes a robust systemic immune response and immunological memory, as evidenced by preventing 83.3% of mice from postsurgical metastasis or recurrence in the B16-F10 tumor mouse model. Collectively, our results highlight the potential of TALE as a neoadjuvant chemo-immunotherapy paradigm that can not only debulk tumors but generate a long-term immunosurveillance to maximize the durable benefits of neoadjuvant chemotherapy.

15.
Small ; 19(23): e2207576, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36905244

RESUMEN

Dysregulation of microRNAs (miRs) is the hallmark of triple-negative breast cancer (TNBC), which is closely involved with its growth, metastasis, and recurrence. Dysregulated miRs are promising targets for TNBC therapy, however, targeted and accurate regulation of multiple disordered miRs in tumors is still a great challenge. Here, a multi-targeting and on-demand non-coding RNA regulation nanoplatform (MTOR) is reported to precisely regulate disordered miRs, leading to dramatical suppression of TNBC growth, metastasis, and recurrence. With the assistance of long blood circulation, ligands of urokinase-type plasminogen activator peptide and hyaluronan located in multi-functional shells enable MTOR to actively target TNBC cells and breast cancer stem cell-like cells (BrCSCs). After entering TNBC cells and BrCSCs, MTOR is subjected to lysosomal hyaluronidase-induced shell detachment, leading to an explosion of the TAT-enriched core, thereby enhancing nuclear targeting. Subsequently, MTOR could precisely and simultaneously downregulate microRNA-21 expression and upregulate microRNA-205 expression in TNBC. In subcutaneous xenograft, orthotopic xenograft, pulmonary metastasis, and recurrence TNBC mouse models, MTOR shows remarkably synergetic effects on the inhibition of tumor growth, metastasis, and recurrence due to its on-demand regulation of disordered miRs. This MTOR system opens a new avenue for on-demand regulation of disordered miRs against growth, metastasis, and recurrence of TNBC.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , MicroARNs/genética , Mama , Serina-Treonina Quinasas TOR/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
16.
Nat Commun ; 14(1): 779, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774382

RESUMEN

Efficient cancer immunotherapy depends on selective targeting of high bioactivity therapeutic agents to the tumours. However, delivering exogenous medication might prove difficult in clinical practice. Here we report a cooperative Nano-CRISPR scaffold (Nano-CD) that utilizes a specific sgRNA, selected from a functional screen for triggering endogenous GDSME expression, while releasing cisplatin to initiate immunologic cell death. Mechanistically, cascade-amplification of the antitumor immune response is prompted by the adjuvantic properties of the lytic intracellular content and enhanced by the heightened GDSME expression, resulting in pyroptosis and the release of tumor associated antigens. Neither of the single components provide efficient tumour control, while tumor growth is efficiently inhibited in primary and recurrent melanomas due to the combinatorial effect of cisplatin and self-supplied GSDME. Moreover, Nano-CD in combination with checkpoint blockade creates durable immune memory and strong systemic anti-tumor immune response, leading to disease relapse prevention, lung metastasis inhibition and increased survival in mouse melanomas. Taken together, our therapeutic approach utilizes CRISPR-technology to enable cell-intrinsic protein expression for immunotherapy, using GDSME as prototypic immune modulator. This nanoplatform thus can be applied to modulate further immunological processes for therapeutic benefit.


Asunto(s)
Melanoma , Neoplasias , Animales , Ratones , Piroptosis , Cisplatino/farmacología , Recurrencia Local de Neoplasia , Neoplasias/patología , Inmunoterapia/métodos , Melanoma/terapia , Línea Celular Tumoral , Microambiente Tumoral
17.
Biomaterials ; 295: 122056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805243

RESUMEN

As a non-invasive modality with unique spatiotemporal selectivity, photodynamic therapy (PDT) is emerging as a candidate in cancer treatment. Nevertheless, intrinsic anti-oxidative stress factors represented by the up-regulated B cell lymphoma/leukemia-2 (Bcl-2) and the attenuated-PDT activity along the light path are still the major concerns, therefore exploring the PDT-based synergistic and augmented strategies is challenging but imperative. Here, a tumor-specific activated nano-domino-CRISPR (TAN) is fabricated and coloaded with chlorins e6 (Ce6) and CRISPR/Cas9 plasmid targeting Bcl-2 gene to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Inert TAN acting as the first domino is activated in enzyme-abundant intracellular environment to strip the shell. The activated TAN pushes the subsequent dominos, encompassing orderly efficient lysosomal escape, gene delivery, precise disruption of Bcl-2 protein and PDT effect induced by the shell containing Ce6 with light to trigger further domino effects. For tumor cells located superficial sites, down-regulated Bcl-2 reduces cellular GSH content and potentiates oxidative stress of PDT. Cells located deep sites are triggered endogenous apoptosis by disruption of Bcl-2. The high anti-tumor efficacy of TAN is demonstrated both in vitro and in vivo. Overall, our work offers a valuable emerging approach for conquering the therapeutical deficiency of PDT.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Estrés Oxidativo , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico
18.
J Adv Res ; 51: 109-120, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36347425

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES: To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS: The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-ß1 (TGF-ß1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS: The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-ß/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION: These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Ratones , Animales , Niclosamida/efectos adversos , Niclosamida/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Matriz Extracelular/metabolismo , Células Epiteliales Alveolares
19.
Small ; 18(50): e2107061, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323618

RESUMEN

In situ tumor vaccines (ITV) have been recognized as a promising antitumor strategy since they contain the entire tumor-specific antigens, avoiding tumor cells from evading immune surveillance due to antigen loss. However, the therapeutic benefits of ITV are limited by obstacles such as insufficient antigen loading, inadequate immune system activation, and immunosuppressive tumor microenvironments (TME). Herein, a tumor microenvironment-activated hydrogel platform (TED-Gel) with programmed drug release property is constructed for cascaded amplification of the anti-tumor immune response elicited by ITV. Both doxorubicin (Dox) and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG) are released first, in which Dox induces immunogenic tumor cell death causing additional tumor antigen release and leading the dying primary tumor cells into autologous tumor vaccine, and the released CpG promotes antigen presenting cell activation. Subsequently, the decomposed scaffold materials in conjunction with CpG, turn the anti-inflammatory M2-like macrophages into the M1 type, reversing the immunosuppressive TME. With decomposition of the TED-Gel, large amounts of macromolecule anti-PD-L1 antibodies are liberated, reinvigorating the exhausted effector T cells. In vivo studies demonstrate that TED-Gel significantly inhibits the primary, distant and rechallenged tumor growth. Overall, the simple and powerful TED-Gel provides an alternative strategy for the future development of tumor vaccines with broad application.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Microambiente Tumoral , Hidrogeles , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias , Doxorrubicina/farmacología , Inmunidad , Inmunoterapia , Línea Celular Tumoral
20.
J Mater Chem B ; 10(40): 8166-8180, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36217765

RESUMEN

Despite extensive efforts to improve the effectiveness of cancer vaccines, the lack of immunogenicity remains an issue. Adjuvants are required to enhance the immunogenicity of antigens and activate the immune response. However, only a few adjuvants with acceptable toxicity have sufficient potency for use in cancer vaccines, necessitating the discovery of potent adjuvants. The most well-known cationic polymer polyethyleneimine (PEI) acts as a carrier for delivering antigens, and as an immunoadjuvant for enhancing the innate and adaptive immunity. In this review, we have summarized PEI-based adjuvants and discussed how to improve and boost the immune response to vaccines. We further focused on PEI-based adjuvants in cancer vaccines. Finally, we have proposed the potential challenges and future issues of PEI-based adjuvants to elicit the effectiveness of cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Adyuvantes Inmunológicos/farmacología , Polietileneimina , Neoplasias/terapia , Antígenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...